Ασθενής με επιδείνωση της συσταλτικότητας της αριστερής κοιλίας μετά βηματοδότηση ΜΙΛΗΛΗΣ ΠΑΝΑΓΙΩΤΗΣ ΕΙΔΙΚΕΥΟΜΈΝΟΣ Β΄ ΚΑΡΔΙΟΛΟΓΙΚΉΣ ΚΛΙΝΙΚΉΣ ΓΝΑ "ΕΥΑΓΓΕΛΙΣΜΟΣ" #### 80 YEARS OLD MALE - ▶ 2010 DCM (EFLV 40-45%) - ▶ 2017 PPM (3rd degree AV Block) - ► NYHA III - ► CKD (GFR=21.6ml/min) - Multiple hospitalizations related to HF ▶ 2019 Echo: EFLV~25% Coronary Angiography: Normal #### ECG Αποφασίσθηκε η θεραπεία καρδιακού επανασυγχρονισμού υπό τη μορφή βηματοδότησης από το δεμάτιο του His. ### His Pacing #### Permanent, Direct His-Bundle Pacing A Novel Approach to Cardiac Pacing in Patients With Normal His-Purkinje Activation > Pramod Deshmukh, MD; David A. Casavant, MS; Mary Romanyshyn, CRNP; Kathleen Anderson, BSN Permanent DHBP is feasible in select patients who have chronic atrial fibrillation and dilated cardiomyopathy. Long-term, DHBP results in a reduction of left ventricular dimensions and improved cardiac function. | | | AV Nodal Block | | | | |--|---|---|----------------------------|-----------------|-----------------| | First Author, Year (Ref. #) | Patients | (Success %) | Infranodal Block | Lead Type | Delivery Sheath | | Deshmukh et al. 2000
(26) (N = 18) | Chronic AF, AV node ablation, DCM | 12 of 18 (66%) | 0 | Stylet-driven | 0 | | Occhetta et al., 2006 (27) $(N = 18)$ | Chronic AF, AV node ablation | 16 of 18 (89%)
DHBP: 25% PHP: 75% | 0 | Stylet-driven | 0 | | Occhetta et al., 2007
(28) (N = 68) | AF, AV node ablation (n $=$ 52)
AV block (n $=$ 16) | 63 of 68
DHBP: 21%
PHP: 79% | 0 | Stylet-38 SS 25 | C304 | | Barba-Pichardo 2010
(29) (N = 182) | HBP attempted in 91 (AVB with HB recruitment with temporary pacing) | 44 of 65 (68%) | 15 of 26 (57%) | Stylet-driven | 0 | | Kronborg et al., 2014
(30) (N = 38) | AV node block
QRS duration <120 ms
LVEF >40%
Crossover, randomized | 32 of 36 (85%)
DHBP: 4
PHP: 28 | 0 | SS | C304 | | Zanon et al., 2011 (31)
(N = 307) | SSS: 126
AVB: 181 | 95%
DHBP: 28%
PHP: 72% | 0 | SS | C304 | | Vijayaraman et al., 2015
(32) (N = 67) | SSS: 40%, AVB: 60%
HB IC positive: 37%
HB IC negative: 63% | 60 of 67 (90%)
S-HBP: 45%
NS-HBP: 55% | | SS | C315His | | Sharma et al., 2015 (33)
(N = 95) | SSS: 41%
AVB: 59% | 75 of 95 (80%)
S-HBP: 45%
NS-HBP: 55% | 21 of 26 | SS | C315HIs | | Vijayaraman et al., 2015
(34) (N = 100) | Advanced AVB
AVN: 46, infranodal: 54 | 43 of 46 (93%)
S-HBP: 44%
NS-HBP: 56% | 41 of 54 (76%)
S-HBP 7% | SS | C315His | | Case series of permanent HBP in CRT-eligible patients with prior bundle branch block | | | | | | | |--|-------------------------|---|---------------------------------------|-----------------------|--|--| | Author, Year | n | Indication | His Bundle
Lead | Implant
Success, % | Primary Outcome | | | Barba-Pichardo
et al, ¹⁹ 2013 | 16 | CRT implant
failure | Tendril 1488T,
1788 TC,
1888 TC | 56 | During mean follow-up of
31.3 ± 21.5 mo, NYHA Class
improved III→II and LVEF
improved from 29% → 36%
(P<.05) | | | Lustgarten
et al, ¹⁹ 2015 | 29 | Crossover study
of HBP and
CS lead | SelectSecure
3830 | 59 | Patients demonstrated similar NYHA Class reduction (2.0 \rightarrow 1.9, P <.001) and LVEF improvement from 26% \rightarrow 32% (P = .043) | | | Su et al, ²¹
2016 | 16 | CRT implant
failure | SelectSecure
3830 | 100 | Clinical outcomes not reported. HB tip-RV coil configuration demonstrated better capture thresholds and R-wave sensing than dedicated bipolar or unipolar | | | Ajijola
et al, ²² 2017 | 21 | Primary HBP | SelectSecure
3830 | 76 | NYHA Class III \rightarrow II (P <.001) and LVEF improved from 27% \pm 10% to 41% \pm 13% (P <.001) | | | Sharma
et al, ²³ 2018 | 106 (48
with
BBB) | CRT implant
failure and
primary HBP | SelectSecure
3830 | 90 | Among all patients, NYHA Class $2.8 \pm 0.5 \rightarrow 1.8 \pm 0.6$ ($P = .0001$) and LVEF improved from $30\% \pm 10\%$ to $43\% \pm 13\%$ ($P = .0001$) | | ## His pacing #### Forms of His bundle capture: - Selective capture: His bundle is the only tissue captured by the pacing stimulus - Nonselective capture: Fusion capture of the His bundle and adjacent ventricular tissues. J Am Coll Cardiol. 2018 Aug 21;72(8):927-947 | TABLE 1 Criteria for His Bundle Pacing | | | | | | | | |--|---|---|---|--|--|--|--| | | | His-Purkinje Conduction Disease | | | | | | | Baseline | Normal QRS | With correction | Without correction | | | | | | Selective HBP | S-QRS = H-QRS with isoelectric interval Discrete local ventricular electrogram in HBP lead with S-V = H-V Paced QRS = native QRS Single capture threshold (His bundle) | S-QRS ≤ H-QRS with isoelectric interval Discrete local ventricular electrogram in HBP lead Paced QRS < native QRS 2 distinct capture thresholds (HBP with BBB correction, HBP without BBB correction) | Discrete local ventricular electrogram
in HBP lead | | | | | | Nonselective HBP | S-QRS < H-QRS (S-QRS usually 0, S-QRS_{end} = H-QRS_{end}) with or without isoelectric interval (Pseudodelta wave +/-) Direct capture of local ventricular electrogram in HBP lead by stimulus artifact (local myocardial capture) Paced QRS > native QRS with normalization of precordial and limb lead axes with respect to rapid dV/dt components of the QRS 2 distinct capture thresholds (His bundle capture, RV capture) | H-QRS_{end}) with or without isoelectric interval (Pseudodelta wave +/-) Direct capture of local ventricular electrogram in HBP lead by stimulus artifact Paced QRS ≤ native QRS | or without isoelectric interval (Pseudo-
delta wave +/-) • Direct capture of local ventricular
electrogram in HBP lead by stimulus
artifact | | | | | #### S-HBP vs NS-HBP - ► There is little hemodynamic and clinical difference between the two forms of capture, possibly due to rapid conduction of the His-Purkinje system relative to ventricular myocardial conduction. - both S-HBP and NS-HBP could restore cardiac physiological electrical synchrony and LV mechanical synchrony. ## RVA pacing in our patient ## His pacing ## CRT-P implantation – HBP ## **Heart**Rhythm **Article in Press** Outcomes Of His Bundle Pacing Upgrade After Long-term Right Ventricular Pacing And / Or Pacing-Induced Cardiomyopathy: Insights Into Disease Progression Pugazhendhi Vijayaraman, MD, FHRS^{1,*}, Bengt Herweg, MD, FHRS², Gopi Dandamudi, MD, FHRS³, Suneet Mittal, MD, FHRS⁴, Advay G. Bhatt, MD⁴, Lina Marcantoni, MD⁵, Angela Naperkowski, RN, CCDS, CEPS, FHRS¹, Parikshit S. Sharma, MD, MPH, FHRS⁶, Francesco Zanon, MD, FESC⁵ Despite a long duration of AV block and chronic RVP, HBP normalized QRS complexes and T waves with stable thresholds, suggesting that progression of distal conduction disease is uncommon in this population. Electrical and structural changes induced by chronic RVP were consistently reversed with HBP. #### HBP Lead capture threshold - ≤2.0 V at 1ms is acceptable - ► Higher threshold accepted with HPCD patients if RV threshold is significantly lower (NS-HBP) - ► His bundle injury current (~40% pts) predicts excellent acute and long term thresholds. Pacing Clin Electrophysiol. 2015 May;38(5):540-6 #### HBP procedural outcomes - ▶ With increased procedural experience feasibility of PHBP is >90% - Recent studies suggest similar fluoroscopy times compared to RVP ## Activation maps for intrinsic QRS #### HBP for CRT HBP can improve echocardiographic and clinical outcomes in patients who failed traditional LV lead implantation and CRT non-responders. Permanent HBP may be a reasonable primary alternative to BVP for CRT Heart Rhythm 2017;14:1353-1361 Heart Rhythm 2018;15:413-420 #### Future directions - ▶ HIS-SYNC Pilot: Comparison of HBP to conventional CRT - ► HOPE-HF: Evaluation of HBP in paitents with HF with Long AV delay and without BBB Use of HBP in patients with IVCD remains uncertain. Σας ευχαριστώ πολύ για την προσοχή σας.